DPP - 8 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:- https://youtu.be/iVOnrmWb2Nw

Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

Q 1. A point charge Q is placed at the centre of a hollow spherical neutral conductor of inner radius R_{1} and outer radius R_{2}. Then
(a) Potential of the inner surface of the conductor is $\frac{K Q}{R_{2}}$
(b) Potential of the outer surface of the conductor is $\frac{K Q}{R_{2}}$
(c) Potential difference between inner and outer surface is $\mathrm{KQ}\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$
(d) Potential of inner surface of the conductor is $\frac{K Q}{R_{2}-R_{1}}$

Q 2. Let there be a non conducting infinite large sheet of charge of surface charge density $\frac{1}{36 \pi} n C / m^{2}$. An uncharged conducting spherical shell of radius 20 cm is placed in front of sheet. A point charge 6 mC is placed at centre of the shell. Force on point charge due to shell is $x \mathrm{mN}$. Find value of x .

(a) 2
(b) 3
(c) 6
(d) 8

Q 3. A point charge q is placed inside a conducting spherical shell of inner radius $2 R$ and outer radius $3 R-\operatorname{tat}$ a distance of R from the centre of the shell. The electric potential at the centre of shell will be $\frac{1}{4 \pi \varepsilon_{0}}$ times
(a) $\frac{q}{2 R}$
(b) $\frac{4 q}{3 R}$
(c) $\frac{5 q}{6 R}$
(d) $\frac{2 q}{3 R}$

Q 4. A point charge q is placed at a distance of r from the centre of an uncharged conducting spherical shell of radius $\mathrm{R}(<\mathrm{r})$. The potential at any point on the sphere is:
(a) zero
(b) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q}{r}$
(c) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q R}{r^{2}}$
(d) $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{q r^{2}}{R}$

Q 5. A point charge q is placed at a distance r from the centre O of a uncharged spherical shell of inner radius R and outer radius 2 R . The distance $\mathrm{r}<\mathrm{R}$. The electric potential at the centre of the shell will be
(a) $\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}-\frac{1}{2 R}\right)$
(b) $\frac{q}{4 \pi \varepsilon_{0} r}$
(c) $\frac{q}{4 \pi \varepsilon_{0}}\left(\frac{1}{r}+\frac{1}{2 R}\right)$
(d) None of these

Q 6. An elliptical cavity is carved within a perfect conductor. A positive charge q is placed at the centre of the cavity. The points A and B are on the cavity surface as shown in the figure. Then: ε_{0}

(a) electric field near A in the cavity $=$ electric field near B in the cavity
(b) charge density at $\mathrm{A}=$ charge density at B
(c) potential at $\mathrm{A}=$ potential at B
(d) electric field near A in the cavity > electric field near B in the cavity

Comprehension (Q. 7 to Q.8)

An empty thick conducting shell of inner radius a and outer radius b is shown in figure. If it is observed that after putting a charge at A the inner face of the shell carries a uniform charge density ' $-\sigma$ ' and the surface carries a uniform charge density ' σ '

Q 7. If another point charge q_{B} is alsoplaced at a distance $\mathrm{c}(>\mathrm{b})$ from the center of shell, then choose the correct statements
(a) force experienced by charge A is $\frac{\sigma q_{A} b^{2}}{\varepsilon_{0} c^{2}}$
(b) force experienced by charge A is zero
(c) The force experienced by charges B is $\frac{\sigma q_{B} b^{2}}{\varepsilon_{0} c^{2}}$
(d) The force experienced by charge B is $\frac{k q_{A} q_{B}}{c^{2}}$

Q 8. If the charge q_{A} is slowly moved inside the shell, then choose the statement(s)
(a) Charge distribution on the inner and outer face of the shell changes
(b) Charge distribution on the inner face of the shell changes only.
(c) The force acting on the charge B charges
(d) The charge B also starts moving slowly

Q 9. In the shown figure the conductor is uncharged and a charge q is placed inside a spherical cavity at a distance a from its centre (C). Point P and charge +Q are as shown. $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are known.

Column-I

(A) Electric field due to induced charges on the inner surface of cavity at point P
(B) Electric potential due to charges on the inner surface of cavity and q at P
(C) Electric field due to induced charges on the outer surface of conductor and Q at C
(D) Electric potential due to induced charges on the inner surface of cavity at C

Column-II

(P) zero
(Q) non-zero
(R) value can be stated with
the given data.
(S) value cannot be stated from the given data

Q 10. There is a small hole at the surface of uniformly charged long cylindrical shell of surface charge density σ. Electric field at centre of hole is
(a) $\frac{\sigma}{8 \epsilon_{0}}$
(b) $\frac{\sigma}{4 \epsilon_{0}}$
(c) $\frac{\sigma}{2 \epsilon_{0}}$
(d) $\frac{\sigma}{\epsilon_{0}}$

Q 11. Electrostatic pressure at Point A of conductor sphere is $\frac{\sigma^{2}}{2 \epsilon_{0}}$, where σ is surface charge density at A. Now a point charge Q is placed at B due to which surface charge density at A changes to σ_{1}. New clectostatic pressure at A is
(a) $\frac{\sigma_{1}^{2}}{2 \epsilon_{0}}-\frac{Q \sigma_{1}}{4 \pi \epsilon_{0} r^{2}}$
(b) $\frac{\sigma_{1}^{2}}{2 \epsilon_{0}}+\frac{Q \sigma_{1}}{4 \pi \epsilon_{0} r^{2}}$
(c) $\frac{\sigma_{1}^{2}}{2 \epsilon_{0}}$
(d) $\frac{\sigma^{2}}{2 \epsilon_{0}}$

Q 12. For the situation shown in the figure below, mark out the correct statement(s)

Hollow neutral conductor
(a) Potential of the conductor is $\frac{q}{4 \pi \varepsilon_{0}(d+R)}$
(b) Potential of the conductor is $\frac{q}{4 \pi \varepsilon_{0} d}$
(c) Potential of the conductor can't be determined as nature of distribution of induced charges is not known
(d) Potential at point B due to induced charges is $\frac{-q R}{4 \pi \varepsilon_{0}(d+R) d}$

Answer Key

Q. 1 a,b	Q. 2 b	Q. 3 c	Q. 4 b	Q. 5 a
Q. 6 c,d	Q. 7 b	Q. $8 \quad$ b	Q. 10 c	Q. 11 c
Q. $12 ~ a, d$				

Q. $9(\mathrm{~A}) \rightarrow \mathrm{QS} ;(\mathrm{B}) \rightarrow \mathrm{PR} ;(\mathrm{C}) \rightarrow \mathrm{PR} ;(\mathrm{D}) \rightarrow \mathrm{QR}$

