

DPP – 8 (Electrostatics)

Video Solution on Website:-

https://physicsaholics.com/home/courseDetails/93

Video Solution on YouTube:-

https://youtu.be/iVOnrmWb2Nw

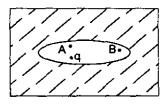
Written Solution on Website:-

https://physicsaholics.com/note/notesDetalis/39

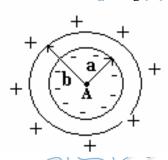
- Q 1. A point charge Q is placed at the centre of a hollow spherical neutral conductor of inner radius R₁ and outer radius R₂. Then
 - (a) Potential of the inner surface of the conductor is $\frac{KQ}{R_2}$
 - (b) Potential of the outer surface of the conductor is $\frac{KQ}{R_2}$
 - (c) Potential difference between inner and outer surface is KQ $\left(\frac{1}{R}\right)$
 - (d) Potential of inner surface of the conductor is $\frac{KQ}{R_2 R}$
- Let there be a non conducting infinite large sheet of charge of surface charge densit Q 2. $\frac{1}{36\pi}nC/m^2$. An uncharged conducting spherical shell of radius 20 cm is placed in front of sheet. A point charge 6mC is placed at centre of the shell. Force on point charge due to shell is x mN. Find value of x.

- (b) 3
- (c)6

- (d) 8
- A point charge q is placed inside a conducting spherical shell of inner radius 2R and outer Q3. radius 3R at a distance of R from the centre of the shell. The electric potential at the centre of shell will be $\frac{1}{4\pi\varepsilon_0}$
- (b) $\frac{4q}{3R}$
- $(c)\frac{5q}{6R}$
- (d) $\frac{2q}{3R}$
- O 4. A point charge q is placed at a distance of r from the centre of an uncharged conducting spherical shell of radius R (<r). The potential at any point on the sphere is:
 - (a) zero
- (b) $\frac{1}{4\pi\varepsilon_0} \cdot \frac{q}{r}$
- $(c) \frac{1}{4\pi\varepsilon_0} \cdot \frac{qR}{r^2}$
- (d) $\frac{1}{4\pi\varepsilon_0}$. $\frac{qr^2}{R}$
- A point charge q is placed at a distance r from the centre O of a uncharged spherical shell of Q 5. inner radius R and outer radius 2R. The distance r < R. The electric potential at the centre of the shell will be
 - (a) $\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} \frac{1}{2R}\right)$ (c) $\frac{q}{4\pi\varepsilon_0} \left(\frac{1}{r} + \frac{1}{2R}\right)$


(d) None of these

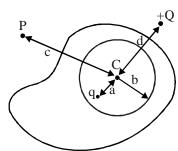
P hysicsaholics


Q 6. An elliptical cavity is carved within a perfect conductor. A positive charge q is placed at the centre of the cavity. The points A and B are on the cavity surface as shown in the figure. Then: ϵ_0

- (a) electric field near A in the cavity = electric field near B in the cavity
- (b) charge density at A = charge density at B
- (c) potential at A = potential at B
- (d) electric field near A in the cavity > electric field near B in the cavity

Comprehension (Q.7 to Q.8)

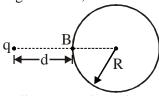
An empty thick conducting shell of inner radius a and outer radius b is shown in figure. If it is observed that after putting a charge at A the inner face of the shell carries a uniform charge density $'-\sigma'$ and the surface carries a uniform charge density $'\sigma'$



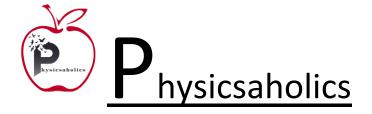
- Q 7. If another point charge q_B is also placed at a distance c (>b) from the center of shell, then choose the correct statements
 - (a) force experienced by charge A is $\frac{\sigma q_A b^2}{\varepsilon_0 c^2}$
 - (b) force experienced by charge A is zero
 - (c) The force experienced by charges B is $\frac{\sigma q_B b^2}{\varepsilon_0 c^2}$
 - (d) The force experienced by charge B is $\frac{kq_A^2q_B}{c^2}$
- Q 8. If the charge q_A is slowly moved inside the shell, then choose the statement(s)
 - (a) Charge distribution on the inner and outer face of the shell changes
 - (b) Charge distribution on the inner face of the shell changes only.
 - (c) The force acting on the charge B charges
 - (d) The charge B also starts moving slowly
- Q 9. In the shown figure the conductor is uncharged and a charge q is placed inside a spherical cavity at a distance a from its centre (C). Point P and charge +Q are as shown. a, b, c, d are known.

hysicsaho<u>lics</u>

Column-I


- (A) Electric field due to induced charges on the inner surface of cavity at point P
- (B) Electric potential due to charges on the inner surface of cavity and q at P
- (C) Electric field due to induced charges on the outer surface of conductor and Q at C
- (D) Electric potential due to induced charges on the inner surface of cavity at C

Column-II


- (P) zero
- (Q) non-zero
- (R) value can be stated with the given data.
- (S) value cannot be stated from the given data
- There is a small hole at the surface of uniformly charged long cylindrical shell of surface charge density σ . Electric field at centre of hole is
 - $(a) \frac{\sigma}{8\epsilon_0} \qquad \qquad (b) \frac{\sigma}{4\epsilon_0}$

- Electrostatic pressure at Point A of conductor sphere is $\frac{\sigma^2}{2\xi_0}$, where σ is surface charge density Q 11. at A. Now a point charge Q is placed at B due to which surface charge density at A changes to σ_1 . New electostatic pressure at A is

 - $4\pi \in {}_{0}r^{2}$
- For the situation shown in the figure below, mark out the correct statement(s)

- Hollow neutral conductor (a) Potential of the conductor is $\frac{q}{4\pi\varepsilon_0(d+R)}$
- (b) Potential of the conductor is $\frac{q}{4\pi\epsilon_0 d}$
- (c) Potential of the conductor can't be determined as nature of distribution of induced charges is not known
- (d) Potential at point B due to induced charges is $\frac{-qR}{4\pi\varepsilon_0(d+R)d}$

Answer Key

Q.1 a,b	Q.2 b	Q.3 c	Q.4 b	Q.5 a
Q.6 c,d	Q.7 b	Q.8 b	Q.10 c	Q.11 c
O.12 a. d		I	I	I

Q.9 (A) \rightarrow QS; (B) \rightarrow PR; (C) \rightarrow PR; (D) \rightarrow QR

